1) $A=p+p r t$, solve for t
2) $V=\frac{1}{3} \pi r^{2} h$, solve for h
3) $V=l w h$, solve for l

Find the indicated term for the following Arithmetic sequence.
4) $5,3.8,2.6,1.4 \ldots$; find the $27^{\text {th }}$ term
6) $16,15.5,15,14.5, \ldots$; find the $15^{\text {th }}$ term

Find the indicated term for the following Geometric sequence.
8) $3,12,48,192, \ldots$; find the $15^{\text {th }}$ term
10) $1,5,25,125, \ldots$; find the $10^{\text {th }}$ term
5) $-5,0,5,10 \ldots$; find the $38^{\text {th }}$ term
7) $6,9,12,15, \ldots$; find the $32^{\text {nd }}$ term
9) $27,9,3,1, \ldots$; find the $6^{\text {th }}$ term
11) $32,16,8,4, \ldots$; find the $12^{\text {th }}$ term
12) Annual sales for a fast food restaurant are $\$ 650,000$ and are increasing at a rate of 4% per year. Write an exponential growth function to model the situation. Then find the annual sales after 5 years.
13) The population of a school is 800 and is increasing at a rate of 2%. Write an exponential growth function to model the situation. Then find the population after 6 years.
14) The population of a town is 2500 and is decreasing at a rate of 3% per year. Write an exponential decay function to model the situation. Then find the population after 5 years.
15) The value of a company's equipment is $\$ 25,000$ and decreases at a rate of 15% per year. Write an exponential decay function to model the situation. Then find the population after 8 years.
16) Write a compound interest function to model $\$ 50,000$ invested at a rate of 3% compounded monthly. Then find the balance after 3 years.
17) Write a compound interest function to model $\$ 43,000$ invested at a rate of 5% compounded annually. Then find the balance after 3 years.
18) Write a compound interest function to model $\$ 65,000$ invested at a rate of 6% compounded quarterly. Then find the balance after 12 years.

Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer.
19) $\{(2,4),(4,8),(6,16),(8,32)\}$
20) $\{(-2,5),(-1,10),(0,15),(1,20)\}$

Look for a pattern in each data set to determine which one is linear, quadratic, or exponential model.
21) $\{(-5,9),(-4,0),(-3,-7),(-2,-12)\}$
23) $\{(1,4),(2,6),(3,9),(4,13.5)\}$

Graph the following exponential functions.
25) $y=5(2)^{x}$
26) $y=-2(3)^{x}$
27) $y=3\left(\frac{1}{2}\right)^{x}$

