| 9.1 – 9.4 Worksheet                                                                     | Name                                  |                       | _Date                                   | _Period |
|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------------------------------|---------|
| 1) $A = p + prt$ , solve for t                                                          | 2) $V = \frac{1}{3}\pi r^2 h$ , solve | for h                 | 3) <i>V</i> = <i>lwh</i> , <i>solve</i> | e for l |
| Find the indicated term for the fo<br>4) 5, 3.8, 2.6, 1.4; find the 27 <sup>th</sup> to | •                                     | 5) –5, 0, 5, 10; fin  | d the 38 <sup>th</sup> term             |         |
| 6) 16, 15.5, 15, 14.5,; find the 1                                                      | 5 <sup>th</sup> term                  | 7) 6, 9, 12, 15,; fir | nd the 32 <sup>nd</sup> term            |         |
| Find the indicated term for the fo<br>8) 3, 12, 48, 192,; find the 15 <sup>th</sup>     |                                       | 9) 27, 9, 3, 1,; find | l the 6 <sup>th</sup> term              |         |
| 10) 1, 5, 25, 125,; find the 10 <sup>th</sup> t                                         | erm                                   | 11) 32, 16, 8, 4,; fi | ind the 12 <sup>th</sup> term           |         |

12) Annual sales for a fast food restaurant are \$650,000 and are increasing at a rate of 4% per year. Write an exponential growth function to model the situation. Then find the annual sales after 5 years.

13) The population of a school is 800 and is increasing at a rate of 2%. Write an exponential growth function to model the situation. Then find the population after 6 years.

14) The population of a town is 2500 and is decreasing at a rate of 3% per year. Write an exponential decay function to model the situation. Then find the population after 5 years.

15) The value of a company's equipment is \$25,000 and decreases at a rate of 15% per year. Write an exponential decay function to model the situation. Then find the population after 8 years.

16) Write a compound interest function to model \$50,000 invested at a rate of 3% compounded monthly. Then find the balance after 3 years.

17) Write a compound interest function to model \$43,000 invested at a rate of 5% compounded annually. Then find the balance after 3 years.

18) Write a compound interest function to model \$65,000 invested at a rate of 6% compounded quarterly. Then find the balance after 12 years.

Tell whether each set of ordered pairs satisfies an exponential function. Explain your answer. 19) {(2, 4), (4, 8), (6, 16), (8, 32)} 20) {(-2, 5), (-1, 10), (0, 15), (1, 20)}

Look for a pattern in each data set to determine which one is linear, quadratic, or exponential model. 21) {(-5, 9), (-4, 0), (-3, -7), (-2, -12)} 22) {(-2, 9), (-1, 13), (0, 17), (1, 21)}

23) {(1, 4), (2, 6), (3, 9), (4, 13.5)}

24) {(0, 4), (2, 12), (4, 36), (6, 76)}

Graph the following exponential functions.

25) 
$$y = 5(2)^x$$
 26)  $y = -2(3)^x$  27)  $y = 3\left(\frac{1}{2}\right)^x$ 

