Determine whether each sequence is an arithmetic sequence. If so, find the common difference and the next three terms.

1) -10, -7, -4, -1, ...

2) 0, 1.5, 3, 4.5, ...

3) 5, 8, 12, 17, ...

4) -20, -20.5, -21, -21.5, ...

Find the indicated term of each arithmetic sequence.

5) 28th term: 0, -4, -8, -12, ...

6) 15th term: 2, 3.5, 5, 6.5, ...

7) 37^{th} term: $a_1 = -3$; d = 2.8

8) 14^{th} term: $a_1 = 4.2$; d = -5

9) 17^{th} term: $a_1 = 2.3$; d = -2.3

10) 92^{nd} term: $a_1 = 1$, d = 0.8

Find the common ratio of each geometric sequence. Then find the next three terms.

11) 1, 4, 16, 64, ...

12) 10, 100, 1000, 10,000, ...

Common ratio: _____; Next three terms: _____ Common ratio: ____; Next three terms: _____

13) 128, 64, 32, 16, ...

14) 4, -20, 100, -500, ...

- Common ratio: _____; Next three terms: _____ Common ratio: ____; Next three terms: _____
- 15) Find the 6^{th} term: $a_1 = 2$, r = 4.

16) Find the 8th term: $a_1 = -3$, r = 2.

17) Find the 9th term: $a_1 = 7$, r = -2.

18) Find the 5th term of the geometric sequence 9, 27, 81, 243, ...

- 19) $S = 2\pi rh$, solve for h
- 20) S = 2B + F, solve for B

21) $S = \frac{1}{2}at^2$, solve for a