1) If a superball is bounced from a height of 20 feet, the function $f(x)=20(0.9)^{x}$ gives the height of the ball in feet of each bounce, where x is the bounce number. What will be the height of the $6^{\text {th }}$ bounce? Round your answer to the nearest tenth of a foot.
2) If a basketball is bounced from a height of 15 feet, the function $f(x)=15(0.75)^{x}$ gives the height of the ball in feet of each bounce, where x is the bounce number. What will be the height of the $5^{\text {th }}$ bounce? Round your answer to the nearest tenth of a foot.
3) The population of a town is 4200 and increasing at a rate of 3\% per year. Write an exponential growth function to model the situation. Then find the population after 7 years.
4) Annual sales for a clothing store are $\$ 270,000$ and are increasing at a rate of 7% per year. Write an exponential growth function to model the situation. Then find the sales after 3 years.
5) The population of a school is 2200 and is increasing at a rate of 2%. Write an exponential growth function to model the situation. Then find the population after 6 years.
6) The value of an antique vase is $\$ 200$ and is increasing at a rate of 8%. Write an exponential growth function to model the situation. Then find the value after 8 years.
7) An internet chat room has 1200 participants and is decreasing at a rate of 2% per year. Write an exponential decay function to model the situation. How many participants after 5 years?
8) The population of a school is 800 and is decreasing at a rate of 2% per year. Write an exponential decay function to model the situation. Then find the population after 4 years.
9) The bird population in a forest is about 2300 and decreasing at a rate of 4% per year. Write an exponential decay function to model the situation. Then find the population after 10 years.
10) Write a compound interest function to model $\$ 20,000$ invested at a rate of 3% compounded annually. Then find the balance after 8 years.
11) Write a compound interest function to model $\$ 35,000$ invested at a rate of 6% compounded monthly. Then find the balance after 10 years.
12) Write a compound interest function to model $\$ 35,000$ invested at a rate of 8% compounded quarterly. Then find the balance after 5 years.
